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We continue to report on research into outcomes that emerge when symbolic manipulator 
software forms a central component of undergraduate teaching. Preliminary data led to the 
identification of 7 categories that encompassed the types of student questions and blockages 
arising during interactive laboratory sessions. Examples illustrative of the categories are 
provided and implications discussed. Additionally we report and discuss the results of 
successive applications of test items designed to assess the impact of complexity (defined in 
terms of syntax, and function choice and specification), on task demand. 

Over a decade ago James Fey surveyed developments in the use of technology in 
mathematics education to that date. In noting that there was no lack of speculative writing 
on the promise of the revolution that was expected to follow he drew attention to the 
paucity of data available to back extravagant claims. 

It is very difficult to determine the real impact of those ideas and development projects in the daily life of 
mathematics classrooms, and there is very little solid research evidence validating the nearly boundless 
optimism oftechnophiles in our field. (Fey, 1989) 

This comment seems as relevant today as it was over a decade ago, even if the 
questions have become more refined. The literature confirms the existence of diverse 
factors that impact on the development and testing of theoretical frameworks, and on the 
conduct of practice. Among these sources, papers addressing the use of technology in 
undergraduate mathematics make for interesting and varied reading. For example: 

The impact upon educational practice of powerful software like Mathematica has been less profound 
than optimists hoped or pessimists feared ... (there is a) tendency to begin by looking for electronic ways 
of doing the familiar jobs previously done by textbooks and lectures. (Ramsden, 1997). 

Of all the flaws in our mathematics training this seemed to us to be the most dangerous and insidious, for 
as we removed mathematics from our courses in response to 'student failings', the need for mathematics 
to do real science was in fact increasing ... firstly there was the pious hope that a computer assisted 
approach would require less staff ... problems arose from attempts to use Mathematica in two ways
which were incompatible. Was software an arena for exploration of mathematical ideas, or a channel for 
their transmission? (Templer et aI, 1998) 

There is growing evidence (in the UK and elsewhere) of a general decline in the mathematics 
preparedness of science and engineering undergraduates ... one response has been to simply reduce the 
mathematics content and to rely on computer-based tools to do much of the mathematical computation ... 
difficult questions (emerge) at the intersection of cognitive and epistemological domains; to what extent 
must the structure of mathematics be understood in order for it (technology) to be used effectively as a 
tool? (Kent & Stevenson, 1999) 

Such are some of the challenging and problematic issues that have emerged, and 
continue to challenge, undergraduate mathematics education. 
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Technology-aided Mathematics Programs 

The fonn of computer-based instruction indicates a range of beliefs among program 
designers and instructors - both about mathematics, and the nature of mathematics learning. 
Olsen (1999: 31) discusses one of the most extensive examples of technology used to 
provide automated instruction. She describes how politicians visiting Virginia Tech's 
Mathematics Emporium, a 58000 square foot (l.5-acre) computer classroom: 

see a model of institutional productivity; a vision of the future in which machines handle many kinds of 
undergraduate teaching duties-and universities pay fewer professors to lecture ... On weekdays from 9 
am to midnight dozens of tutors and helpers stroll along the hexagonal pods on which the computers are 
located. They are trying to spot the students who are stuck on a problem and need help. 

This factory model assumes that mathematics is something primarily to be delivered 
and consumed. By contrast Shneidennan et al (1998) describe a model, in which courses 
are scheduled into electronic classrooms following a competitive proposal process, and in 
which active engagement with an interactive, multimedia environment. is mandated. 

In between the extremes exist a variety of models of instruction, concerned in varying 
degrees with factory production on the one hand, and student understanding and 
engagement on the other, and it is instructive to read comments describing the 
characteristics of such programs. Here are some selections: 

Templer et al (1998) noted problems accompanying efforts to provide meaningful 
learning that were perceived to arise as a direct result of a symbolic manipulator 
(Mathematica) environment. They noted that typically having mastered the rudiments; 

the majority of students began to hurtle through the work, hell bent on ftnishing everything in the 
shortest possible time. 

The following comment, or a close relative, was noted as occurring frequently among 
the students: 

I just don't understand what I'm learning here. I mean all I have to do is ask the machine to solve the 
problem and it's done. What have I learned? 

Kent and Stevenson (1999) in elaborating on their concerns about student quality (see 
above), question whether mathematical procedures can be learned effectively without an 
appreciation of their place in the structure of mathematics. They argue that unless some 
kind of breakdown in the functionality of some concept or procedure (say integration) is 
provoked, students do not focus on the essential aspects of that concept or procedure. On 
the other hand they observe that the fonnal demands of a programming environment serves 
both to expose any fragility in understanding, and to support the building and conjecturing 
required in the re (construction) of concepts by learners. This comment engages a debate 
about whether computer technology should be employed following prior understanding of 
mathematical concepts and procedures (Harris, 2000), or as a means integral to the 
development of such understanding (Roddick, 2001). Clearly this matter is not yet 
resolved. 

As noted previously, increasing uses of technology have been linked with perceived 
decreases in the prior mathematics preparation of undergraduates, and in some quarters at 
least, there seems to be an implicit belief in the existence of 'good old days'. In fact 
learning problems have always existed (see Gray (l975) for an Australian example), and 
their recent escalation is a dubious justification for the introduction or increase of 
computer-assisted learning. Ultimately the success or failure of any teaching approach 
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resides in the quality with which students engage the learning mediums provided, and the 
extent to which mathematical integrity, rather than medium specific properties is the arbiter 
of understanding and quality. Mathematically related problems specifically associated with 
the introduction of screen-based learning are increasingly being documented (Templer 
et.al., 1998; Kent & Stevenson, 1999; Guin & Trouche, 1999; Lagrange, 1999; Doerr & 
Zangor, 2000). Doerr & Zangor refer to student preference for calculator output over 
contextual reality, whereby students insisted on working with 6 decimal places on 
problems whose data involved using crude measuring devices. Guin & Trouche report on 
the erroneous impact of graphic representation of functions. Left alone to experiment 
students inferred results that were wrong-for example the number of solutions to the 
equation tan x = x deduced from a screen display featuring six intersections. This gap 
between real mathematics and the image of mathematics depicted by a screen suggests the 
emergence of a new 'tyranny of the screen' as an authoritative source, replacing, and 
possibly more insidious, than the traditional 'tyranny of the text'. Lagrange identified 
problems associated with the interpretation of output from symbolic manipulator (Derive) 
software. Specifically, rather than building mathematical meaning from screen feedback as 
expected, students' perceptions were invaded by the properties of the software. For 
example, in noting the output of the 'Expand' command on the square of algebraic sums, 
rather than focusing on mathematical regularities such as the number of terms in the sum 
and in the expansion, students instead focused on the order of terms in the expansion, a 
regularity linked only to the software, and of no mathematical significance. 

The Study Context 

The first-year undergraduate mathematics course, forming the context of this study 
provides for a population of several hundred students studying within Science and 
Engineering degree courses. As presented in 1999 and 2000 the courses comprised a 
lecture series complemented by weekly workshops, in which approximately 40 students 
were timetabled into a laboratory containing networked computers equipped with Maple 
software. The lecture room was fitted with computer display facilities so Maple processing 
was an integral. and continuing part of the lecture presentation. During laboratory 
workshops two tutors and frequently the lecturer also, were available to assist the students 
working on tasks structured through the provision of weekly worksheets, and to answer 
their questions. Unscheduled additional access to the laboratory was available for 
approximately 5 hours per week. Preliminary observation of students, taken together with 
issues raised in the literature, led to the formulation of three research questions. 

1. What is the distribution, and characteristic of questions raised by students while 
engaged in learning mathematics within a symbolic manipulator environment? 

2. What types of blockages cause progress to be stalled? 
3. What factors contribute to the demand of tasks in which Maple and mathematics 

interact? 

Data Sources 

On the basis of a review of 1999 data (Galbraith & Pemberton, 2000) a set of 
categories (see Table 1) was defined to structure the 2000 data collection. For each 
laboratory session the course tutors recorded the range of questions asked of them by 
students in terms of these categories, together with examples of each type. Analysis of the 
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collated responses enabled the first two research questions to be addressed. A second 
source of data was derived from a test given 7 weeks after the program started. This test, a 
voluntary exercise, comprised a series of questions to be addressed with the assistance of 
Maple in its laboratory context. It provided formative feedback to the students on their 
performance, and was relevant to preparing for their formal assessment. Questions ranged 
from simple school level manipulations to new material introduced in the tertiary program. 
The set of basic test questions (13) remained substantially the same with three of the 
original questions replaced in 2000. Sample questions are included in the appendix. 

Complexity 

In addressing question 3 we note the importance firstly of accurate syntactical 
representation of common elementary operations and terms, and secondly the demand 
imposed by the correct selection and specification of functions necessary to achieve 
identified mathematical ends. We seek to relate performance and hence task demand to the 
influence of these two factors (labelled respectively Syntax and Function). For use in 
analyses these descriptors were redefined with greater precision than the more generic 
interpretations adequate for the descriptive levels appropriate for questions I and 2. 

Syntax: refers to the general Maple definitions necessary for the successful execution of 
commands. These include the correct use of brackets in general expressions, and common 
symbols representing a specific syntax different from that normally used in scripting 
mathematical statements (such as *, ", Pi, g:=). 

Function: refers to the selection and specification of particular functions appropriate to 
the task at hand. Specific internal syntax required in specifying a function is regarded as 
part of the Function component, including brackets when used for this purpose. 
Complexity is represented by a simple count of the individual components required in 
successful operation. We illustrate how these definitions work, by applying them to two of 
the examples given in the appendix. 

Ql. Syntax: Incidence of 1\ [4] plus ( ) [2]; total=6. 
Function: General structural form of evalf ( argument); evalf [I] plus () [I] plus argument[ 1 ]; total= 3. 
QIl. Syntax: Incidence of*[2] plus () [3]; plus y [I] plus := [I]; total=7. 
Function: General structural form of plot( function, domain); sub-total [5] plus 

domain specification [1]; General structural form ofint(y, integ interval); sub-total [5] plus 
(subtraction) [I] plus integration interval specifications [2]; total=14. 

Similar pairs were assigned to each of the questions forming the test samples. Scoring 
was on a correct/incorrect basis, with the success rate on the questions defined by the 
fraction of students obtaining the correct answer, given that the question . was attempted. 
This differs from the approach to the preliminary data described in an earlier paper 
(Galbraith & Pemberton, 2000) where the absence of an attempt was defined as failure. The 
success rate may be interpreted as a measure of the probability of success, of a student on 
respective questions. We note that for purposes of analysis the population is the set of 
mathematical tasks (questions) in which Maple is invoked as the means of solution. The 
student responses are used to assign the probabilities of success for the sample of questions 
used in the study. 
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Results 

A summary of responses relevant to research questions 1 and 2 is contained in Table 1, 
showing the distribution of student questions and comments; and illustrated in the 
structured collection of substantive examples (Figure 1). A degree of judgement is 
occasionally involved in allocating questions and comments to one category rather than 
another, but the distribution (generated from approximately 1300 items) is believed to be a 
robust representation. 

Table 1 
Student Question Distribution (2000 data) 

Question Category 

1. Identify problem caused by a typo (TYPO) 

2. Resolve syntax error (SYNTAX) 

3. Problem with function choice (FCHCE) 

4. Problem specifying function (FSPEC) 

5. Stuck on mathematics (MA THSTUCK) 

6. Stuck on Maple (MAPLESTUCK) 

7. Interpreting aspects of output (INTERPRET) 

Number 

109 (8.4%) 

333 (25.7%) 

60 (4.6%) 

192 (14.8%) 

197 (15.2%) 

254 (19.6%) 

152 (11.7%) 

It is significant that both mathematical issues and software issues feature prominently 
(Table 1), a characteristic made explicit through the examples illustrating the respective 
categories (Figure 1). It is clear from these examples that both mathematics and Maple; 
separately and together, feature prominently in the questions that students ask, and in the 
blockages that cause progress to stall. 

TYPO: 
Spelling, 0 for 0, Missing parts (= from :=; one of a bracket pair) 
SYNTAX: 
• Case sensitivity e.g., pifor Pi; 
• Missing characters e.g., symbols (* in 2*x etc); brackets (ln3 for In(3) etc); 
• Confusion with calculator syntax e.g., eAxfor exp(x); 
FUNCTION 
Function choice: 
• Confusion between alternatives; e.g., 'simplifY' vs 'expand' vs factor', 'evalf'vs 'convert', 

fsolve'vs 'solve '; 'angle' vs 'dotprod'. 
• Problems within a selection field; e.g., left or right or general 'limit', using 'subs' with 

function'. 
Function Specification: 
• Form; not honouringfunction syntax x=O ... l etc, specifYing vector as a matrix, specifYing 

sequences, using hybrid notations e.g., y (x): =x-7 then Plot (y, x=O .. 8) etc. 
• Problems within functions; non-matching dimensions in matrix, evalfinfimction 
STUCK ON MATHS 
• Basic Maths: e.g., order of operations, difference between significant figures and decimal 

places, common denominators, floating point vs exact form, difference between function and 
expression. 

• Advanced Maths (definitions) e.g., meaning of continuity, meaning oflim x->O+, 
What is a second order derivative? What is a partial derivative? Classifying stationary points, 
formal definitions (e.g. continuity and limits), What are orthogonal vectors? What is an AP? 
What is a Taylor series? 
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STUCK ON MATHS (CONT) 
• Advanced Maths (procedures) e.g., Finding partial fractions, how to solve simultaneous 

equations by hand, how to fmd a function value to ensure continuity at a point, How does· a 
(Taylor series) expansion around a point work? What does 'justify your answer mean?" Finding 
approximations for errors in series, calculating percentage change, setting up dot products, matrix 
multiplication. 

STUCK ON MAPLE 
• Syntax Blockages e.g., What does 'A' mean? What is the difference between pi and Pi? How do 

I put a square root sign in Maple? How do I get 5 dec places using %? Mixing together functions, 
expressions, diff and D; Specific woes e.g. Taylor series syntax. 

• Procedural Issues e.g., How to insert Maple input and delete previous output? How do I delete 
lines? Get cursor back? Write text? Print? Cut and paste? Must I use Maple if I can do it in my 
head? 

• Operational Blockages e.g., Trying to use already assigned variables; How do I (in Maple) solve 
2 simultaneous equations? Do definite integrals? Find first and second derivatives? Approximate 
Pi? Develop sequences? Do absolute value? Set up systems. of equations? Find sums of terms of 
sequences? 

INTERPRETATION 
• General issues e.g., How do I know if the Maple answer is right? What does this result mean? Is 

this what I'm meant to be getting? Where did this answer come from? What does undefined 
mean? 

• Specific Maple issues e.g., What did Digits:=3 do? What does the 5 in 'evalf (%, 5) do? What 
does 'collect' do"? What does it mean if 'solve' returns nothing? Is that output of solve (F1, x) 
right? What does 'zip' do? What is the 'order' term? Many questions about graphical output. 

Figure 1. Student response summary (2000). 

For research question 3, sample data for the year 2000 are contained in Table 2, with 
regression analyses for both years summarised in Tables 3 and 4. The analysis sought the 
impact of Syntax and Function on probability of success (Success rate). 

Table 2 
Illustrating Complexity and Success Rate (2000) 

Question 1 2 3 4 5 6 7 8 9 10 11 

Syntax 6 3 9 5 3 4 6 8 5 10 7 

Function 3 3 3 5 6 11 6 10 5 11 14 

Success rate 0.89 0.92 0.67 0.89 0.96 0.63 0.81 0.63 1 0.56 0.59 

Table 3 
Regression (2000 & 1999.) 

Regression Statistics 

Multiple R 

RSquare 

Adjusted R Square 

Standard Error 

Observations 

F value 
Significance ofF 
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2000 

0.904 

0.817 

0.781 

0.078 

13 
22.374 
p<0.001 *** 

1999 

0.884 

0.782 

0.738 

0.112 

13 
7.906 
p<0.001 *** 

12 13 

5 2 

6 6 

0.93 1 
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Table 4 
Regression Continued (2000 & 1999-in brackets) 

Coefficients Standard Error t Statistic P-value 

Intercept 1.202 (1.206) 0.063 (0.078) 15.424 (19.005) <IE-7 «IE-7) 

Syntax -0.040 (-0.050) 0.010 (0.013) -4.108 (-3.754) 0.002** (0.004)** 

Function -0.025 (-0.028) 0.007 (0.010) -3.705 (-2.641) 0.004** (0.025)* 

We note the significant impact of the variables Syntax and Function on success rate 
is confirmed for both years. Syntax errors penalise those who lack sufficient care in 
expressing their work symbolically, while the demands imposed by Function are 
proportional to the principles and sophistication of the associated mathematics. Note also 
the substantial amount of variance accounted for (above 70%). 

Reflections 

Reviewing the scope and nature of symbolic manipulator supported learning, we note 
the overt purpose of reducing procedural load though the use of automatic processes. Thus 
we identify a reduction in the demand for procedural knowledge that could ostensibly lead 
to improved performance. However we note that achieving mastery of procedures also 
enables them to be encoded as conceptual knowledge, adding to the network of information 
available for recall and action in future situations. So is a potential gain on procedural 
swings lost on conceptual roundabouts? The setting up of Maple solutions requires not 
only that all relevant mathematics concepts be activated, but that Maple functions also be 
appropriately selected and accurately specified using precisely defined syntax. It might be 
argued then that for students with incomplete learning schemas, the conceptual load, as 
distinct from the procedural load, is increased in comparison with traditional written 
approaches? The questions and blockages identified from student workshop activity 
indicate that the mathematics and software are closely entwined, with problems emerging 
from each separately and from both in combination. In relation to the literature the students 
do seem to interrogate the screen more carefully than in some reports. Their responses 
certainly challenge beliefs in factory models of delivery that imply that computers 
essentially transmit knowledge for consumption and absorption by learners. By their own 
expressed reactions via the medium of comments and questions, the students also challenge 
thinking that would see technology as a means of compensating for poor or absent 
background knowledge. This inference is strengthened by the analysis relevant to our third 
question, through which we note that while achieving more rapid and efficient closure to 
algorithmic procedures, the use of Maple has not reduced the need for the mathematical 
attributes of understanding and attention to detail. This can be observed in the significant 
impact of the variables Syntax and Function on success rate. So when used as a learning 
tool our experience suggests that symbolic manipulator software, far from simplifying 
demands throws into relief learning issues that add substantially both to our understanding 
of student problems, and to the challenge of meeting them. On the other hand for those 
students who possess sound understanding and due regard for precision, the Maple 
environment has provided a means to progress rapidly and successfully at a greater rate 
than could otherwise be achieved. These latter use the software as a power tool rather than 
a learning tool. That is they are able to use its capacity to extend the boundaries of their 
capability in much the same way that experts use programs in pursuit of their own high 
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level goals. Perhaps one of the immediate challenges in technology-aided learning is to 
distinguish between such alternative approaches, capabilities, and learning needs. This is 
where real individual differences may lie, rather than in the more popular assumptions 
associated with the freedoms provided by individual access to machines and flexible 
scheduling. 
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Appendix 

Sample Maple Test Questions 
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The ordered pairs following the sample questions provide measures of: (Syntax, Function). 

125 +234 
1. Express first as a fraction, and then as a decimal. (6,3) 

7 8 +5 9 

3. Find a simpler form of(x2 +1)3 +(x2 _1)3 _2x2(x4 +1) (9,3) 

10. If f(x)=(x 2 +1)11 2 +(x2 +4)11 2 -x ,for x ~ 0, find where f'(x) = O. (10,11) 

11. Plot f(x) = (x-l)(x-2)(x-3). ( ) 
7,14 

Hence find the physical area under the graph from x = 1 to x = 3. 

12. Evaluate J~I+4sin2 x dx (5,6) 
o 


